LC 2015: PAPER 1

Question 7 (50 marks)

Question 7 (a) (i)

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x+d \leftarrow(0,0) \in f(x) \Rightarrow f(0)=0 . \\
& f(0)=0 \Rightarrow 0 \cdot 0024(0)^{3}+0 \cdot 018(0)^{2}+c(0)+d=0 \\
& \therefore d=0
\end{aligned}
$$

```
Marking Scheme Notes
Question 7 (a) (i) [Scale 5B (0, 2, 5)]
2: - Recognises }x=
```


Question 7 (a) (ii)

$f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x \leftarrow(-5,0 \cdot 15) \in f(x) \Rightarrow f(-5)=0 \cdot 15$.
$f(-5)=0 \cdot 15 \Rightarrow 0 \cdot 0024(-5)^{3}+0 \cdot 018(-5)^{2}+c(-5)=0 \cdot 15$
$0 \cdot 15-5 c=0 \cdot 15$
$5 c=0$
$\therefore c=0$
or
The plane land horizontally at O. Therefore $f^{\prime}(x)=0$ when $x=0$.

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}+c x \\
& f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x+c \\
& f^{\prime}(0)=0 \Rightarrow f^{\prime}(0)=0 \cdot 0072(0)^{2}+0 \cdot 036(0)+c=0 \\
& \therefore c=0
\end{aligned}
$$

Marking Scheme Notes

Question 7 (a) (ii) [Scale 5B (0, 2, 5)] Note: two solutions
1 st solution
2: - Uses $x=-5$ or $f(x)=0 \cdot 15$
5: - Begins with $c=0$ and shows $f(-5)=0 \cdot 15$ or similar or
2nd solution
2: •Uses $x=-5$

- Gets $f^{\prime}(x)$
- Uses $f^{\prime}(x)=0$ when $x=0$

Question 7 (b) (i)

$$
\begin{aligned}
& f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2} \\
& f^{\prime}(x)=0 \cdot 0072 x^{2}+0 \cdot 036 x \\
& f^{\prime}(-4)=0 \cdot 0072(-4)^{2}+0 \cdot 036(-4) \\
& \\
& =-\frac{18}{625} \\
& \\
& =-0 \cdot 0288
\end{aligned}
$$

Formulae and Tables Book
Calculus: Derivatives [page 25]

$$
\begin{aligned}
& y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1} \\
& y=[f(x)]^{n} \Rightarrow \frac{d y}{d x}=n[f(x)]^{n-1} \times f^{\prime}(x)
\end{aligned}
$$

Marking Scheme Notes
Question 7 (b) (i) [Scale 10C (0, 3, 7, 10)]
3: - Any term correctly differentiated
7: - Correct differentiation
10: $-\frac{18}{225}$ is a correct answer
Question 7 (b) (ii)

The slope of the tangent to $f(x)$ at $x=-4$ is given by $f^{\prime}(-4)$. The slope is also the tan the angle makes with the $+x$-axis.
$\tan \theta=-0 \cdot 0288$ [Second quadrant]
$\alpha=\tan ^{-1}(0.0288)=1.65^{\circ}$ [Reference angle in first quadrant]
$\theta=180^{\circ}-1 \cdot 65^{\circ} \approx 178^{\circ}$ [Second quadrant]
Angle of descent $=2^{\circ}$

Marking Scheme Notes

Question 7 (b) (ii) [Scale 5B (0, 2, 5)]
2: - Recognition of connection between slope and $\tan \theta$

- Any right angled triangle

Question 7 (c)
$f^{\prime}(x)=0.0072 x^{2}+0.036 x$
$f^{\prime \prime}(x)=0 \cdot 0144 x+0 \cdot 036$
$f^{\prime \prime}(x)=0 \Rightarrow 0 \cdot 0144 x+0 \cdot 036=0$
PoInt OF INFLECTION: Put $\frac{d^{2} y}{d x^{2}}=0$
$\therefore x=-2 \cdot 5$
or $f^{\prime \prime}(x)=0$ and solve for x.
$f(x)=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}$
$f(-2 \cdot 5)=0 \cdot 0024(-2 \cdot 5)^{3}+0 \cdot 018(-2 \cdot 5)^{2}=0.075$
Point of inflection $(-2 \cdot 5,0 \cdot 075)$

Marking Scheme Notes
Question 7 (c) [Scale 10D (0, 2, 5, 8, 10)]
2: - Some correct differentiation of $f^{\prime}(x)$

- Mention of $f^{\prime}(x)$

5: - Correct $f^{\prime \prime}(x)$
8: - Value of x substituted
Question 7 (d) (i)

$$
\begin{aligned}
& y=0 \cdot 0024 x^{3}+0 \cdot 018 x^{2} \\
& \begin{aligned}
f(-x-5) & =0 \cdot 0024(-x-5)^{3}+0 \cdot 018(-x-5)^{2} \\
& =(-x-5)^{2}[0 \cdot 0024(-x-5)+0 \cdot 018] \\
& =\left(x^{2}+10 x+25\right)[-0 \cdot 0024 x-0 \cdot 012+0 \cdot 018] \\
& =\left(x^{2}+10 x+25\right)[-0 \cdot 0024 x+0 \cdot 006] \\
& =-0 \cdot 0024 x^{3}+0 \cdot 006 x^{2}-0 \cdot 024 x^{2}+0 \cdot 06 x-0 \cdot 06 x+0 \cdot 15 \\
& =-0 \cdot 0024 x^{3}-0 \cdot 018 x^{2}+0 \cdot 15 \\
& =-\left(0 \cdot 0024 x^{3}+0 \cdot 018 x^{2}\right)+0 \cdot 15 \\
& =-y+0 \cdot 15
\end{aligned}
\end{aligned}
$$

Marking Scheme Notes

Question 7 (d) (i) [Scale 5C (0, 2, 4, 5)]
2: - Some correct substitution
4: - Correct expansions

Question 7 (d) (ii)
$-x-5 \rightarrow-2 \cdot 5[x+2.5]$
$-y+0.15 \rightarrow 0.075[y-0.075]$
$-x-5 \rightarrow-2 \cdot 5 \rightarrow x$
$-y+0 \cdot 15 \rightarrow 0 \cdot 075 \rightarrow y$
$\therefore(-x-5,-y+0 \cdot 15) \rightarrow(-2 \cdot 5,0 \cdot 075) \rightarrow(x, y)$

or

Let (x, y) be the image.
The point of inflection will be the midpoint of $(-x-5,-y+0 \cdot 15)$ and (x, y).

$$
\begin{aligned}
\text { Midpoint } & =\left(\frac{-x-5+x}{2}, \frac{-y+0 \cdot 15+y}{2}\right) \\
& =(-2 \cdot 5,0 \cdot 075)
\end{aligned}
$$

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

```
Marking Scheme Notes
Question 7 (d) (ii) [Scale 10C (0, 4, 8, 10)] Note: two solutions
1st solution
4: - Work leading to change in x
8: - Correct change in }x\mathrm{ and }y\mathrm{ values
or
2nd solution
4: - Uses (x,y) as image, and no more
8: - Effort at calculating mid-point
```

